Initiative Name and Acronym National Air Quality Initiative (AQI)

Initiative Description/Summary

Under the Food Conservation and Energy Act of 2008, the Secretary shall provide eligible producers with program support to address serious air quality concerns from agricultural operations and help meet regulatory requirements through the Environmental Quality Incentives Program (EQIP). During fiscal year (FY) 2013, the program is designed to help producers meet air quality compliance requirements, as well as, support practices which address impacts associated with greenhouse gases (GHG). To further meet national goals for consistency in delivery of program benefits associated with AQI, the agency will nationalize implementation of the program in FY 2013 with new requirements and business tool controls as outlined in this guidance.

Approved or Participating States and Counties:

National EQIP Air Quality Initiative funds will be allocated to States and Counties which have been identified as having significant air quality resource concerns related to designated non-attainment for Ozone and Particulate Matter. The table identifies the approved States and allocation percentages that will be applied to available funding as well as the air quality resource concerns for each approved county. The final FY 2013 allocation to support the AQI will be announced at a later date in the allocation letter or other bulletin.

STATE	State Percent	Approved County	PM 10 PM 2.5		Excessive Ozone
AZ	5.11%	Cochise	Х		
		Gila	Х		
		Maricopa	Х		х
		Mohave	Х		
		Pima	Х		
		Pinal	х	Х	х
		Santa Cruz	Х	х	
		Yuma	Х		
CA	41.73%	Alameda		Х	х
		Amador			х
		Butte		Х	х
		Calaveras			х
		Contra Costa		Х	х
		El Dorado		Х	Х
		Fresno	Х	Х	х
		Imperial	Х	Х	Х
		Inyo	Х		
		Kern	Х	Х	Х
		Kings	Х	Х	Х
		Los Angeles	Х	Х	Х
		Madera	Х	Х	Х
		Marin		Х	х
		Mariposa			х
		Merced	Х	Х	х
		Mono	Х		
		Napa		Х	х
		Nevada			х
		Orange	Х	Х	х

		Placer		Х	Х
		Riverside	Х	X	X
		Sacramento	X	X	X
		San Bernardino			
		San Diego	X	Х	X
		San Francisco		.,	X
		San Joaquin		Х	Х
			X	Х	Х
		San Luis Obispo San Mateo			X
				Х	Х
		Santa Clara		Х	Х
		Solano		Х	Х
		Sonoma		Х	Х
		Stanislaus	Х	Х	Х
		Sutter		Х	Х
		Tehama			Х
		Tulare	Х	Х	х
		Tuolumne			X
		Ventura			Х
		Yolo		Х	x
		Yuba		Х	
СО	6.00%	Adams	Х		х
		Arapahoe	Х		х
		Archuleta	Х		
		Boulder	Х		х
		Broomfield	х		х
		Denver	Х		Х
		Douglas	х		х
		Fremont	х		
		Jefferson	х		х
		Larimer			х
		Pitkin	Х		
		Prowers	X		
		Routt	X		
		San Miguel	X		
		Weld	Α		Х
IL	4.94%	Cook	Х	Х	X
12	1.7770	Du Page		X	X
		Grundy		X	X
		Jersey		X	X
		Kane		Х	X
		Kendall		X	X
		La Salle	х		
		Lake	X	V	V
		Madison	V	X	X
		Mc Henry	X	X) ·
		Monroe		X	X
				Х	Х
		Randolph		X	

		St Clair		Х	Х
		Will		X	X
IN	6.14%	Allen		^	X
114	0.1170	Boone			X
		Clark		х	X
		Dearborn		X	X
		Delaware		, , , , , , , , , , , , , , , , , , ,	X
		Dubois		х	X
		Elkhart		X	Х
		Floyd		х	X
		Gibson		X	Α
		Greene			Х
		Hamilton		х	Х
		Hancock			X
		Hendricks		Х	Х
		Jackson			Х
		Jefferson		Х	
		Johnson		х	Х
		La Porte			Х
		Lake	Х	Х	х
		Madison			Х
		Marion		х	х
		Morgan		х	Х
		Pike		Х	
		Porter		Х	Х
		Shelby			Х
		Spencer		Х	
		St Joseph			х
		Vanderburgh		Х	х
		Vermillion	×		
		Vigo			х
		Warrick		Х	х
MI	6.38%	Allegan			х
		Benzie			х
		Berrien			Х
		Calhoun			Х
		Cass			Х
		Clinton			Х
		Eaton			Х
		Genesee			Х
		Huron			Х
		Ingham			Х
		Kalamazoo			Х
		Kent			Х
		Lapeer			Х
		Lenawee			Х
		Livingston		Х	Х

		Macomb		Х	Х
		Mason			X
		Monroe		х	X
		Muskegon		Α	X
		Oakland		х	X
		Ottawa		Α	X
		St Clair		х	X
		Van Buren			X
		Washtenaw		х	X
		Wayne	х	х	X
ОН	9.66%	Adams		х	
		Allen			Х
		Ashtabula		х	X
		Belmont		х	Х
		Butler		х	Х
		Clark		Х	Х
		Clermont		Х	Х
		Clinton			Х
		Columbiana			х
		Coshocton		Х	
		Cuyahoga	х	Х	х
		Delaware		Х	х
		Fairfield		х	х
		Franklin		х	х
		Gallia		х	
		Geauga			х
		Greene		Х	х
		Hamilton		х	х
		Jefferson	х	Х	х
		Knox			Х
		Lake		Х	Х
		Lawrence		Х	
		Licking		Х	Х
		Lorain		х	Х
		Lucas			Х
		Madison			Х
		Mahoning			Х
		Medina		х	Х
		Miami			х
		Montgomery		Х	Х
		Portage		Х	х
		Scioto		Х	
		Stark			Х
		Summit		Х	Х
		Trumbull			Х
		Warren		Х	х
		Washington		Х	Х

		Wood			v
DΛ	12 440/	Adams			X
PA	12.46%	Allegheny	V		X
		Armstrong	Х	X	X
-		Beaver		X	X
-		Berks		X	X
		Blair		Х	X
		Bucks		.,	X
		Butler		X	X
		Cambria		Х	X
		Carbon		Х	X
		Centre			X
		Chester			X
		Clearfield		Х	X
		Cumberland		.,	X
		Dauphin		X	X
		Delaware		X	X
		Erie		Х	X
		Fayette			X
		Franklin			X
		Greene			X
		Indiana		X	X
		Lackawanna		Х	X
		Lancaster			X
		Lawrence		X	Х
		Lebanon		X	
		Lehigh		X	X
		Luzerne		Х	X
		Mercer			
		Monroe			X
		Montgomery		V	X
				X	X
		Northampton Perry		Х	X
		Philadelphia		V	X
		Tioga		Х	X X
		Washington		v	
		Westmoreland		X X	X X
		Wyoming		X	X
		York		Х	X
TX	7.58%	Brazoria		Χ	X
1 /	7.3070	Chambers			X
		Collin			X
		Dallas			X
		Denton			X
		El Paso	Х		X
		Ellis	X		
		Fort Bend		-	X
		I OLI DELIA			Х

		Galveston	х
		Hardin	х
		Harris	х
		Jefferson	х
		Johnson	х
		Kaufman	х
		Liberty	х
		Montgomery	х
		Orange	х
		Parker	х
		Rockwall	х
		Tarrant	х
		Waller	х
		Wise	х
TOTAL	100%		

Explanation: Approved State and Counties and the allocation formula are based upon the following:

Total number of States and Counties where air pollution levels persistently exceed National Ambient Air Quality Standards (NAAQS) established by the Clean Air Act and documented on the current listed EPA website. States and Counties selected for initiative funding are derived from EPA designations of non-attainment for any of the three priority air quality concerns of: Particulate Matter 10, Particulate Matter 2.5, or Ozone. The percent allocation is based upon the averaging of two factors for each County designated by EPA:

- Agricultural Land in each County (Farm Acres)
- Number of Agricultural Operations in each County (Number of Farms)

The number of farm operations and farm acres are totaled together for each designated County and a weighted percentage is calculated for each State. The State percentages are "weighted" based upon the number of designated non-attainment pollutants in each County (Equal to the number of NAAQS standards exceeded in the County). The resulting formula creates a weighted percentage for each State.

Source of Data for FY 2013:

Environmental Protection Agency (EPA):

Greenbook Non-Attainment Areas - August 29, 2012

National Agricultural Statistics Service (NASS):

Table 1, County Summary Highlights - 2007 (No. of Farms & Farm Acres)

Program Contact Information:

EQIP AQI Program Manager: Aaron Lauster at (202) 720-8644; aaron.lauster@wdc.usda.gov

ProTracts Requirements:

1. Subaccount Guidance:

The following sub account will be created in ProTracts to support AQI in each State approved for the initiative:

"Air Quality National" with an account type of "Air Quality National"

States shall evaluate and fund applications for air quality related projects and the required air quality related Conservation Activity Plan (CAP) using the "Air Quality National" sub account. Applications for the CAP must be assigned the application type of "planning". States may establish additional air quality related sub accounts using other program funds, but must attach an account type of "Air Quality State".

- 2. Application, Evaluation, and Ranking Tool (AERT) Guidance Choice Lists and Matrix Data:
 - Approved Land Types to be populated in ProTracts AERT:

States must assign the following land uses as eligible for this initiative. (Other land uses are not authorized for AQI)

Required Land Use
Crop
Forest
Grazed Forest
Headquarters
Grazed Range
Pasture
Hay

Approved Natural Resource Concerns to be populated in ProTracts AERT:

States must assign the following natural resource concerns for this initiative (Other resource concerns are not authorized for AQI).

Air Quality Natural Resource Concerns
Particulate matter less than 2.5 micrometers in diameter (PM 2.5)
Particulate matter less than 10 micrometers in diameter (PM10)
Excessive Ozone
Excessive Greenhouse Gas -N ₂ O (nitrous oxide)
Excessive Greenhouse Gas -CO ₂ (carbon dioxide)
Excessive Greenhouse Gas -CH ₄ (methane)
Ammonia (NH ₃)

Approved Conservation Practices to be populated in ProTracts AERT:

The following conservation practices are required to be offered in all FY 2013 approved AQI States to address identified air quality resource concerns. No additional conservation practices may be added or offered through AQI during FY 2013.

Approved AQI Practices	Practice Code
Comprehensive Air Quality Management Plan	126
Access Control	472
Agrichemical Handling Facility	309
Air Filtration and Scrubbing	371
Alley Cropping	311
Amendments for Treatment of Agricultural Waste	591
Anaerobic Digester, Controlled Temperature	366
Anionic Polyacrylamide (PAM) Erosion Control	450
Combustion System Improvement	372
Composting Facility	317
Conservation Cover	327
Conservation Crop Rotation	328
Cover Crop	340
Critical Area Planting	342
Cross Wind Ridges	588
Cross Wind Trap Strips	589c

Drainage Water Management	554
Dust Control from Animal Activity on Open Lot Surfaces	375
Dust Control on Unpaved Roads and Surfaces	373
Feed Management	592
Field Border	386
Forage and Biomass Planting	512
Forest Stand Improvement	666
Heavy Use Area Protection	561
Hedgerow Planting	422
Herbaceous Wind Barriers	603
Integrated Pest Management	595
Irrigation System, Sprinkler	442
Irrigation Water Management	449
Mulching	484
Multi-Story Cropping	379
Nutrient Management	590
Prescribed Burning	338
Prescribed Grazing	528
Pumping Plant	533
Range Planting	550
Residue and Tillage Management, Mulch Till	345
Residue and Tillage Management, No Till/Strip Till/Direct Seed	329
Residue and Tillage Management, Ridge Till	346
Residue Management, Seasonal	344
Riparian Forest Buffer	391
Riparian Herbaceous Cover	390
Roofs and Covers	367
Silvopasture Establishment	381
Solid/Liquid Waste Separation Facility	632
Stripcropping	585
Surface Roughening	609
Tree/Shrub Establishment	612
Waste Treatment	629
Waste Treatment Lagoon	359
Windbreak/Shelterbelt Establishment	380
Windbreak/Shelterbelt Renovation	650
Woody Residue Treatment	384

• AERT Practice-Resource Concern Matrix

States shall populate the approved conservation practices in the ProTracts AERT and associate all approved resource concerns designated High, Medium, or Low in the following table.

Fiscal Year 2013 Air Quality Initiative Required practices:	Appro	ved ProTra	acts Air Qualit	y Natural Res	ource Concerns	
Approved Conservation Practices	Code	PM 10	PM 2.5	Excessive Ozone	Ammonia	Excessive Greenhouse Gas CO2, N2O, CH4
Comprehensive Air Quality Management Plan	126	N/A	N/A	N/A	N/A	N/A
Access Control	472	Medium	Medium	None	None	None
Agrichemical Handling Facility	309	Low	Low	Low	Low	None
Air Filtration and Scrubbing	371	High	High	Medium	High	Medium
Alley Cropping	311	Medium	Medium	None	None	Medium
Amendments for Treatment of Agricultural Waste	591	Medium	Medium	Low	High	None
Anaerobic Digester, Controlled Temperature	366	None	None	Low	None	High
Anionic Polyacrylamide (PAM) Erosion Control	450	Medium	Medium	None	None	None
Combustion System Improvement	372	High	High	High	None	High
Composting Facility	317	None	None	Low	Low	Low
Conservation Cover	327	Medium	Medium	None	None	High
Conservation Crop Rotation	328	Medium	Medium	None	None	Low
Cover Crop	340	Medium	Medium	None	Low	Medium
Critical Area Planting	342	Medium	Medium	None	None	Low
Cross Wind Ridges	588	Medium	Medium	None	None	None
Cross Wind Trap Strips	589c	Medium	Medium	None	None	None
Drainage Water Management	554	Medium	Medium	None	None	Low
Dust Control from Animal Activity on Open Lot Surfaces	375	High	High	None	None	None
Dust Control on Unpaved Roads and Surfaces	373	High	High	None	None	None
Feed Management	592	Medium	Medium	Low	High	High
Field Border	386	Low	Low	None	None	Low
Forage and Biomass Planting	512	Low	Low	None	None	High
Forest Stand Improvement	666	None	None	None	None	High
Heavy Use Area Protection	561	Medium	Medium	None	None	None
Hedgerow Planting	422	Medium	Medium	None	None	Low
Herbaceous Wind Barriers	603	Medium	Medium	None	None	Medium
Integrated Pest Management	595	Medium	Medium	Medium	None	None
Irrigation System, Sprinkler	442	Medium	Medium	None	None	None
Irrigation Water Management	449	Medium	Medium	None	None	None
Mulching	484	Medium	Medium	None	None	Low
Multi-Story Cropping	379	None	None	None	None	High

	ı						
Fiscal Year 2013 Air Quality Initiative Required practices:			Approved ProTracts Air Quality Natural Resource Concerns				
Code	PM 10	PM 2.5	Excessive Ozone	Ammonia	Excessive Greenhouse Gas CO2, N2O, CH4		
590	Medium	Medium	Medium	High	High		
338	None	None	None	None	Low		
528	Medium	Medium	None	None	Low		
533	Medium	Medium	Medium	None	Medium		
550	Low	Low	None	None	Medium		
345	High	High	None	None	Medium		
329	High	High	None	None	High		
346	Medium	Medium	None	None	Medium		
344	Low	Low	None	None	None		
391	None	None	None	None	Medium		
390	None	None	None	None	Medium		
367	Medium	Medium	Low	Medium	High		
381	None	None	None	None	High		
632	Low	Low	Medium	Medium	Low		
585	Medium	Medium	None	None	None		
609	Medium	Medium	None	None	None		
612	None	None	None	None	High		
629	None	None	Low	Medium	Low		
359	None	None	Low	None	None		
380	High	High	None	Medium	High		
650	Medium	Medium	None	Medium	Low		
384	None	None	Low	None	Medium		
	590 338 528 533 550 345 329 346 344 391 390 367 381 632 585 609 612 629 359 380 650	Code PM 10 590 Medium 338 None 528 Medium 533 Medium 550 Low 345 High 329 High 344 Low 391 None 367 Medium 381 None 632 Low 585 Medium 609 Medium 612 None 359 None 380 High 650 Medium	Code PM 10 PM 2.5 590 Medium Medium 338 None None 528 Medium Medium 533 Medium Medium 550 Low Low 345 High High 329 High High 346 Medium Medium 391 None None 390 None None 367 Medium Medium 632 Low Low 585 Medium Medium 609 Medium Medium 612 None None 629 None None 359 None None 380 High High 460 Medium Medium	Code PM 10 PM 2.5 Excessive Ozone 590 Medium Medium Medium 338 None None None 528 Medium Medium None 533 Medium Medium Medium 550 Low Low None 345 High High None 346 Medium Medium None 344 Low Low None 391 None None None 390 None None None 367 Medium Medium Low 381 None None None 632 Low Low Medium 585 Medium Medium None 609 Medium Medium None 612 None None None 629 None None Low 359 None None Low	CodePM 10PM 2.5Excessive OzoneAmmonia590MediumMediumMediumHigh338NoneNoneNoneNone528MediumMediumNoneNone533MediumMediumMediumNone550LowLowNoneNone345HighHighNoneNone329HighHighNoneNone344LowLowNoneNone391NoneNoneNoneNone390NoneNoneNoneNone367MediumMediumLowMedium381NoneNoneNoneNone632LowLowMediumMedium585MediumMediumNoneNone609MediumMediumNoneNone612NoneNoneNoneNone629NoneNoneLowMedium359NoneNoneLowMedium650MediumMediumNoneMedium		

3. Application, Evaluation, and Ranking Tool Guidance - Ranking Criteria Questions:

The total ranking points associated with the Initiative are to be distributed in AERT and approved ranking questions as follows:

AERT Level	Maximum Points	Point Percentage
National Level Ranking Questions	250	25%
State Level Ranking Questions	400	40%
Local Level Ranking Questions	250	25%
Efficiency Score	100	10%
Total Points for this initiative:	1,000	100%

In order to meet the requirements of 440 CPM Part 512, Subpart C, states shall adjust AERT "multipliers" in ProTracts to assure that the above target percentages will properly distribute available ranking points for each category.

The following are detailed instructions for populating ranking questions and points in ProTracts AERT.

National Level Ranking Criteria Requirements:

National ranking questions are established in ProTracts by the national office. National priorities must account for 250 points or 25% of total points.

Only the following national level ranking questions apply to this initiative. All other national level ranking criteria are not applicable and should be answered "No" by the Designated Conservationist:

- 1. If the application is for development of a Conservation Activity Plan (CAP), the agency will assign significant ranking priority and conservation benefit by answering "Yes" to the following question. Answering "Yes" to question 1a will result in the application being awarded the maximum amount of points that can be earned for the national priority category.
 - 1a. Is the program application for development of a Conservation Activity Plan (CAP)? <u>If answer is "Yes"</u>, do not answer any other national level questions. If answer is "No", proceed with evaluation to address the remaining questions in this section.
- 4. Clean Air: Treatment of air quality from agricultural sources Will the proposed project assist the producer to implement practice(s) which:
 - 4a. Meet on-farm regulatory requirements relating to air quality or proactively avoid the need for regulatory measures?
 - 4b. Reduce on-farm generated green house gases such as CO2 (Carbon Dioxide), CH4 (Methane), and N2O (Nitrous Oxide)?
 - 4c. Increase on-farm carbon sequestration?

State Level Ranking Criteria Requirements:

State ranking questions for this initiative are established by the national office and will be entered into ProTracts by the national office. State level ranking questions must account for a total of 400 points. Set AERT to a maximum of 400 points for this category.

	2013 EQIP AQI State Level Ranking Questions	FY 2013 Points
1.	If the application is for development of a Conservation Activity Plan (CAP), the agency will assign significant ranking priority and conservation benefit by answering "Yes" to the following question. Answering "Yes" to question 1a will result in the application being awarded the maximum amount of points that can be earned for the state priority category.	
	1a. Is the program application for development of a Conservation Activity Plan (CAP) for a TSP prepared Comprehensive Air Quality Management Plan (126)? If answer is "Yes", do not answer any other state level questions. If answer is "No", proceed with evaluation to address the remaining questions in this section.	400
2.	Choose the most appropriate response below regarding the location of the project with regard to EPA National Ambient Air Quality Standards (NAAQS) designations for the area. Maximum points 45.	
	2a EQIP project is located in an area that has an EPA NAAQS nonattainment designation for PM2.5, PM10 and Ozone (all 3).	45
	2b EQIP project is located in an area that has an EPA NAAQS nonattainment designation for 2 out of 3 of these pollutants (PM2.5, PM10 and Ozone).	20
	2c EQIP project is located in an area that has an EPA NAAQS nonattainment designation for 1 out of 3 of these pollutants (PM2.5, PM10 and Ozone).	10

3.	Choose the most appropriate response below regarding the location of the project with regard to the EPA National Ambient Air Quality Standards (NAAQS) ozone designation for the area. Maximum points 65.	
	3a EQIP project is located in EPA NAAQS Designation "Extreme" nonattainment area.	65
	3b EQIP project is located in EPA NAAQS Designation "Severe" or "Serious" nonattainment area.	40
	3c EQIP project is located in EPA NAAQS Designation "Moderate" or "Marginal" nonattainment area.	25
4.	Choose the most appropriate response below regarding the location of the project with regard to the EPA NAAQS PM10 designation for the area. Maximum points 30.	
	4a EQIP project is located in an area that is designated as serious nonattainment by the EPA for PM10 or is a PM10 maintenance area that was previously designated as serious nonattainment.	30
	4b EQIP project is located in an area that is designated as moderate nonattainment by the EPA for PM10.	20
5.	Choose the most appropriate response below regarding the EQIP contract with regard to local or state air quality regulations that specifically address agricultural emissions. Maximum points 20.	
	5a EQIP project practice(s) address one or more local or state agriculturally- related air emissions regulatory requirements.	20
6.	Choose the most appropriate response below regarding the potential for the EQIP contract to replace existing diesel engines used on farm – All retired engines must be destroyed according to requirements outlined in the Combustion System Improvement practice standard. Maximum points 65.	
	6a The EQIP project results in replacement of one or more existing diesel engine(s) with energy efficient electric motor(s).	65
	6b The EQIP project results in replacement of two or more existing pre-1980 diesel engines with the most current Tier-level diesel engines.	40
	6c The EQIP project results in replacement of one existing pre-1980 diesel engine with the most current Tier-level diesel engine.	30
	6d The EQIP project results in replacement of one existing 1980 or newer diesel engine with the most current Tier-level diesel engine.	20
	6e The EQIP project results in retrofit of an existing diesel engine with approved devices.	10
7.	If the EQIP application is located in an area where the applicant needs to address a PM10 resource concern select the statement below that best describes the practices included in this application. (Refer to "Practice-Resource Concern Matrix) Maximum points 35.	
	7a EQIP application includes at least one or more practices for PM10 that provide a high or significant environmental benefit.	35
	7b EQIP application includes no high priority practices but does include one or more medium priority practices to address PM10.	20
	7c EQIP application includes no high or medium priority practices, but does include one or more low priority practices to address PM10.	10
8.	If the EQIP application is located in an area where the applicant needs to address a PM2.5 resource concern select the statement below that best describes the practices included in this application. (Refer to "Practice-Resource Concern Matrix) Maximum	
	8a EQIP application includes at least one or more practices for PM2.5 that provides a high or significant environmental benefit.	35

8b EQIP application includes no high priority practices but does include one or more medium priority practices to address PM2.5.	20
8c EQIP application includes no high or medium priority practices, but does include one or more low priority practices to address PM2.5.	10
9. If the EQIP application is located in an area where the applicant needs to address an Ozone resource concern select the statement below that best describes the practices included in this application. (Refer to "Practice-Resource Concern Matrix) Maximum	
9a EQIP application includes at least or more practices for Ozone that provides a high or significant environmental benefit.	35
9b EQIP application includes no high priority practices but does include one or more medium priority practices to address Ozone.	20
9c EQIP application includes no high or medium priority practices, but does include one or more low priority practices to address Ozone.	10
10. If the EQIP application is partially or fully focused on ammonia emission reductions select the statement below that best describes practices included in this application. (Refer to "Practice-Resource Concern Matrix) Maximum points 35	
10a EQIP application includes at least one or more practices for ammonia that provides a high or significant environmental benefit.	35
10b EQIP application includes no high priority practices but does include one or more medium priority practices to address ammonia.	20
10c EQIP application includes no high or medium priority practices, but does include one or more low priority practices to address ammonia.	10
11. If the EQIP application is partially or fully focused on greenhouse gases select the statement below that best describes the practices included in this application. (Refer to "Practice-Resource Concern Matrix) Maximum points 35.	
11a EQIP application includes at least one or more practices for GHGs that provide a high or significant environmental benefit.	35
11b EQIP application includes no high priority practices but does include one or more medium priority practices to address GHGs.	20
11c EQIP application includes no high or medium priority practices, but does include one or more low priority practices to address GHGs.	10
Total Points:	400

Local Level Ranking Criteria Requirements:

Most Local ranking questions are approved and entered into ProTracts at the State level. Local level ranking questions must account for a total of 250 points or at least 25% of total points available according to the requirements in 440 CPM, Part 512, Subpart C. Establish a maximum point total of 250 in ProTracts AERT. Each State MUST enter the following question #1 in the ProTracts Local level category in ProTracts:

	2013 EQIP AQI Local Level Ranking Questions	FY 2013 Points
1.	If the application is for development of a Conservation Activity Plan (CAP), the agency will assign significant ranking priority and conservation benefit by answering "Yes" to the following question. Answering "Yes" to question 1a will result in the application being awarded the maximum amount of points that can be earned for the local priority category.	
	1a. Is the program application for development of a Conservation Activity Plan (CAP) for a TSP prepared Comprehensive Air Quality Management Plan (126)? If <a a="" answer="" any="" do="" href="mailto:answer is " level="" local="" not="" other="" questions<="" yes",="">. If answer is "No", proceed with evaluation to address the remaining questions in this section.	250

EXAMPLE LOCAL QUESTIONS

For the AQI, States are encouraged to utilize questions that address State and local priorities that are associated with the approved natural resource concerns and questions that encourage use of a "systems approach". Following are examples of questions that might be utilized for each of the recommended categories.

Examples of questions that address air quality resource concerns are:

- Application will result in annual NOx reductions ofgreater than 3 tons/year?
- Application will result in annual NOx reductions of 2 to 3 tons/year?
- Application will result in annual NOx reductions of 1 ton/year or less?
- Application will result in on-farm PM10 reductions greater than 80% from existing conditions?
- Applicationwill result in on-farm PM10 reductions between 50% to 79% from existing conditions?
- Applicationwill result in on-farm PM10 reductions of 49% or less from existing conditions.

Examples of questions that address geographic related air quality issues are:

- Application is located within ¼ mile of a public use area such as a school, hospital, senior center, residential area?
- Application is located within ½ mile of a public use area such as a school, hospital, senior center, residential area?

Examples of questions that utilize a systems approach are:

- Application will result in the implementation of 3 planned conservation practices on at least ____
 percent of the offered acres resulting in the existence of a conservation system where at least one
 practice has a positive effect in each of the PM10, PM2.5 and Ozone resource concern categories?
 60 Points.
- Application will result in the implementation of 2 planned conservation practices on at least ____
 percent of the offered acres resulting in the existence of a conservation system where at least one
 practice has a positive effect in each of the PM10, PM2.5 and Ozone resource concern categories? 40
 Points.
- Application will result in the implementation of 1 planned conservation practices on at least ____ percent of the offered acres resulting in the existence of a conservation system where at least one practice has a positive effect in each of the PM10, PM2.5 and Ozone resource concern categories? 20 Points.

Cost Effectiveness Calculation:

By agency policy, the amount of points associated with the AERT cost efficiency calculation must be 100 points or 10% of total points available. (CPM 440 Part 512.25(A)(2)). States must appropriately adjust the Efficiency Score Multiplier to assure this ranking calculation will account for approximately 10% of the total ranking score.

Screening Criteria Requirements:

The following screening criteria are optional for use to support this initiative. The screening criteria may be adjusted to meet the State needs to prioritize applications for ranking purposes.

Optional National Air Quality Initiative Screening Criteria Worksheet: NRCS Environmental Quality Incentives Program (EQIP)

Fiscal Year 2013

A Screening Worksheet must be completed for each eligible EQIP application.

Instructions:

This screening worksheet must be completed for each eligible producer applying for EQIP National Air Quality Initiative assistance. Applications will be accepted on a continuous basis; however, application periods are established for purposes of evaluation, ranking, and funding decisions. The goal of this screening tool is to ensure that conservation technical assistance and EQIP program benefits are managed efficiently to address priority conservation needs related to this national initiative.

of a program contract. the application is dete	worksheet and documentation does not constitute agree The original screening worksheet should be filed with t rmined to be ineligible, the screening priority (high, me completed screening worksheet may be provided to the	he applicant case dium, and low) m	file or EQIP pr	ogram	file and unless
Detailed Screeni	ng Criteria Worksheet – Complete for each	n eligible EQIF	Applicant		
Applicant Name:		County:			
Application No:		Field Office:			
Evaluator Name:		Date:			
Priority Det	ermination for ProTracts – Select One:				
Ineligible Category: The EQIP application is associated with land that is not located within the boundaries of the approved FY 2013 Air Quality Initiative State and County.			d	Application Status is "Ineligible"	
 High Priority Category: (If one or more of the following are true) The application includes practices which will address all three priority natural resource concerns: PM10, PM2.5 and Ozone, and project is located in a County designated by EPA as NAAQS nonattainment for all three pollutants? The application is for a Comprehensive Air Quality Management Plan Conservation Activity Plan (CAP)? 			High Priority Status in ProTracts		
Medium Priority The application i resource concern designated by EF	Category: ncludes practices which will address two cons (PM10, PM2.5 and Ozone), and project PA as NAAQS nonattainment for both add	of the three p is located in a ressed resour	riority natu County ce concerr	ural ns?	Medium Priority Status in ProTracts
Low Priority Cate All other applica					Low Priority Status in ProTracts
The priority determination of high, medium or low must be recorded in ProTracts for this applicant.					
D.C. Approval:		А	Date pproved:		

D.C. Approval:	Date	
D.C. Approval:	Approved:	

4. Additional Initiative Guidance:

a. Fund Management:

When States are notified that AQI funds have been distributed to ProTracts, States shall then reallocate their AQI funds to the nationally established sub account "Air Quality National." Funds may not be distributed to the County level until after evaluation and ranking of applications has been completed for the entire State.

If States are unable to obligate all of the allocated AQI funds in approved non-attainment counties, STCs may request approval from the Deputy Chief for Programs, to use remaining unobligated funds in other counties to address specifically cited state or local air quality regulations. If AQI funds cannot be used to address air quality resource concerns, the STC shall return the excess funds to the national office through an allowance change. STCs may add additional regular EQIP funds to the AQI fund account, but none of the AQI funds may be reallocated to support other accounts or program priorities.

b. Previous FY 2012 AQI Energy Resource Concern:

Last fiscal year, the AQI included opportunities to address energy conservation. Practices and resource concerns associated with energy conservation have been removed from the FY 2013 AQI and should be addressed through the National On-Farm Energy Initiative.